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This study is based on a constructivist approach to the learn-
ing of the concept of the derivative by discovery and by
self-pacing. To determine whether the new learning and
teaching environment had an impact on the students’ un-
derstanding of the derivative, two groups, each consisting
of 34 students, comprised the control and experimental
groups respectively. The experimental group participated in
a Mathematica Learning Project whilst the control group
was taught traditionally. Both groups were tested. It was
envisaged that Mathematica Learning project may mini-
mize the cognitive overload experienced by students during
a traditional lecture. The project work in the laboratory
formed part of the assessment for the experimental group.
To evaluate students’ responses, errors made by students
during the project and the paper-pencil test were analysed.
Findings revealed a greater number of structural errors in
the control group as compared to the experimental group.
Further the experimental group exhibited more deep struc-
tures than surface structures whilst the traditional group
exhibited more superficial structures than deep structures.

Introduction

Two groups of 34 students, one the experimental group
and the other the control group,  participated in this project.
Both groups were made up of homogenous students with
varying mathematical ability.  All students had to satisfy the
University requirement of a minimum symbol either ‘E’ on
the higher grade or ‘D’ on the standard grade in their ma-
triculation examination results. The control group attended
traditional lectures that consisted of chalk and talk lessons
in a University lecture theatre.  They were taught by a team
member of the Mathematics Research Group established at

the University.  The students were supported by a weekly
tutorial where students would interact with a tutor in areas
of concern.  The experimental group was oriented to
Mathematica software in a laboratory environment in four
two-hourly sessions by members of the Mathematics Re-
search Group.  During laboratory sessions students were
able to collaborate with members of their group and mem-
bers of the Research Group. After determining that there
was reasonable competency with syntax and other com-
puter related aspects, the students were asked to complete
the compulsory mathematics project from the Department
of Mathematics at the University of Technology.  This
project was also part of their course fulfillment require-
ments.  This ensured that students would find the experi-
ence beneficial and work to the best of their ability since it
also contributed to their course mark.  Immediately after
the project was completed both the experimental group and
control group completed Orton’s (1983) tasks on differen-
tiation.

Findings by Naidoo (1996) deduced that, in a traditional
classroom, first year mathematics students study by rules.
They do not enjoy mathematics and are de-motivated.  Lec-
turers tend to teach mechanistically and do standard type
solutions to standard type problems.  He drew attention to
the fact that mathematics at the University of Technology
(previously Technikon) level is not a specialist subject.  This
contributes to the “poor” understanding of critical concepts
that are essential for extended learning – a type of under-
standing that is needed to support an increasingly techno-
logical world. Consequently the time and attention given to
study mathematics is limited.

Naidoo and Naidoo (2007) found that teaching and learning
using the computer laboratory gave a measure of success.
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Although students were performing better, they were still
making errors.  Some of these errors were: (i) inability to
conclude that sequences converge (ii) problems with rate
of change of a curve and (iii) inability to interpret symbols.
Studies done on Calculus Reform (Silverberg, 2004) indi-
cate a measure of success.  Silverberg was unable to draw
firm conclusions about achievement in mathematics grades
when comparing the traditional and reform cohorts.  In
contrast, his analysis of follow-up grades produced the most
compelling results. The comparison of grades in follow-on
courses such as physics and engineering science showed
significant improvements between cohorts. After some time
the reform group performed better in these courses.

Blended Learning environment which combined face-to-
face sessions together with computer interaction (similar
to Owston et al., 2006) was used to compliment traditional
lectures. Pre-knowledge concepts that are underdeveloped
in the traditional learning environment were tested and ma-
nipulated as objects in a Blended Learning environment.  For
example, function, graph, and rate of change can be pro-
cessed in simple and concrete ways and then
reconceptualised. Students are able to explore pre-knowl-
edge concepts and shape their learning. These include func-
tion, gradient and ratio.  Two categories of software, pro-
grammable microworlds and expressive tools where such
transformation is significant were identified (Noss & Hoyles,
2004).  Mackie (2002) changed the emphasis of teaching
and learning of calculus from techniques and routine sym-
bolic manipulation towards higher level cognitive skills that
focus on concepts and problem solving.  She found that it
encouraged students to become reflective deep learners.

Project Work in Mathematics

Vithal (2004) found projects or project work to form a “pro-
gressive” approach to mathematics education and advo-
cates more “open-ended”, “problem-centered” activities in
which learners are given greater independence in their learn-
ing, in contexts relevant to them.  In terms of the outcomes
based approach to learning, project work is extensively used
as an assessment strategy in modern South African Schools.
Not much research exists to test the effect and use of project
work.  In countries like Scandinavia and Denmark project
work had been introduced for decades.

Wurnig (2004), found significant changes in the learning
process when using project work in mathematics problem
solving.  Some of these were: (i) the learning process is
more student oriented; (ii) the lecturer is not the only source
of knowledge; (iii) there are more mathematical discussions
among students; (iv) the computer is an additional expert in
the learning situation; (v) there is an emphasis on problem

solving and application oriented mathematics. Using tech-
nology like Mathematica, students can explore and model
mathematics concepts.  When hands-on computer activi-
ties are used students benefit in that the computer is able to
sketch graphs and carrying out manipulations frees the stu-
dent to concentrate on the concepts.

The Derivative and The Mathematica
Project

We review theoretical issues in the literature which explore
some of the concepts and processes associated with dif-
ferentiation. The derivative can be seen as a concept which
is built from other concepts. Particularly, the derivative can
be seen as a function, a number if evaluated at a point, limit
of the sequence of secant slopes or rate of change. Differ-
entiation assumes the understanding of function or more
generally a curve (not all curves can be formulated by a
function).  Each advanced concept in mathematics is based
on elementary concepts and cannot be grasped without a
solid and sometimes very specific understanding of these
elementary concepts. Thus the concepts of advanced math-
ematics carry an intrinsic complexity. For example, stu-
dents cannot grasp what is meant by a differential equation
or interpret its solution unless they have understood the
derivative concept and not just the techniques of differen-
tiation. Mathematicians explain the derivative using pre-con-
cepts such as elementary algebra, rates of change, limits
and infinity and tangents. The network or sequence leads
to interrelated ideas, each idea integrating some of the more
elementary ones into an added structure. It is precisely the
complexity of concepts that makes differentiation difficult
for students to grasp.

There is a distinction between the mathematical concepts
as formally defined and the cognitive processes by which
they are conceived. The term ‘concept image’ describes
the total cognitive structure that is associated with the con-
cept. Tall & Vinner (1981) indicate that the concept image
includes all mental pictures and associated properties and
processes. In coming to understand mathematical concepts
at school, students evolve mental pictures at a concrete
level.  For example, to understand rate of change students
evoke pictures of a moving car. The mental pictures which
served the students well at school level may now become
an impediment. Bruner (1986) suggested that iconic pro-
cessing limited ideas and urged a movement onto the sym-
bolic level. The student with an inadequate concept image
may find such a development difficult to achieve. The con-
cept image of the limit may evoke a mental frame of a chord
(secant) tending to a tangent which is a form of a metaphor
as described by Oertman (2003).  A qualitative theoretical



182 Proceedings of epiSTEME 3

framework was constructed  by Naidoo (1996) from the
analysis of errors in arithmetic by Donaldson (1963), cog-
nitive frame theory by Davis (1984) and the modified Orton’s
(1983) tasks.

David Tall (1996) used the “local straightness” of the graph
as his “good” cognitive root to build calculus.  His Graphic
Calculus software enabled the student to magnify a portion
of the graph to observe the straightness by tracing the gra-
dient numerically along the graph.  Additional software al-
lowed the student to point the mouse at a given place in the
plane and draw a line segment of the given gradient.  An
approximate solution could be constructed physically and
visually by sticking segments from end to end. This is a
means of encouraging deep approaches to learning.  The
student is motivated further by adding reality to his solu-
tion.

The derivative theory can be taught using the traditional
method where the student is shown that a series of secants
form a converging sequence.  This is an overload for the
average learner since knowledge of the secant, tangent and
other geometrical knowledge is involved.

Zoom Function and The Derivative

The zoom graph method is a computer lab experience where
the curve is approximated to a straight line. It is effective
because the student is dealing only with gradients of a
straight line.  When the domain intervals are very small the
curve can be approximated as a straight line.  Instead of
using secants we zoom to get a straight line. Here we es-
tablish the idea of the gradient of a curved graph.  Using a
suitable software the graph can be drawn and a part of the
can be selected and magnified.  The magnified part looks
“straight”. This method frees the student from cognitive

overload.  The student does not have to deal with tangents,
secants and complex geometry. Tall (2002) agrees that cal-
culus software should be programmed to assist the user to
explore graphs with corners and wrinkled graphs.  Figure 1
(adapted from Visual Calculus software programmed by
Teresinha Kawasaki) shows how computer software can
be used to zoom over a small interval on a curve.  The rate
of change can be found from both directions.

Using mathematica the students were able to deduce the
derivative by a secant converging to a tangent and from the
rate of change of a straight line.   In this way students were
able to use multiple representations to deal with the deriva-
tive concept.  Traditional learning and blended learning is
combined in a flexible way (Gray,  2006) using a combina-
tion of options at each stage of the delivery.  Students were
able to explore concepts that could not be explained easily
using only traditional approaches.

Analysis of Data

The data from the project work consisted of student project
protocols from the project tasks.

Table 1 shows responses categorized as deep, intermediate
and surface using specific criteria for three tasks. The cri-
teria are presented along with the tasks below.

Fig. 1. Software used to zoom over a small interval on a curve

Table: 1. Deep and surface learning in the mathematica
project
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TASK A: Find the limit of the following numerically and

graphically: . Discuss your results.  For
the numeric values show explicitly whether the sequence is
converging or diverging.
Deep: Response must include “sequences”, “converges to

a point” and “limit”.

Intermediate: Response must include “sequences”, and
“converges to a point” but neglects “limit”.

Surface: Response has “sequences” but does not mention
convergence.

TASK B: Let

(i)Find the average rate of change of f(x) from x = 0.5 to x
= 0.9. (ii) Find the equation of the corresponding secant
line. (iii) Plot the graphs of f(x) and the secant line on the
same axes. (iv) Repeat parts (i) to (iii) for x = 0.5 and x =
0.51.  Explain what you observe. (v) Zoom in on the graph
around the point (0.5, f (0.5)).  Show your plot and explain
what you observe about the two graphs in (iv). (vi) Re-plot
the graph f(x) over the interval [0,1].  Now zoom in on the
graph around the point (0.5, f (0.5)) until the graph looks
like a straight line. Show your plot and explain how you can
use this graph to estimate the slope of this line.  (Hint:  Move
the mouse pointer to the line and click at two different points
on it; then observe the first and second coordinates of the
points you clicked on.)
Deep: Responses includes “function”, “change in function:

”, “line joining points (x, y) and
on the graph” and “represents a secant

line”.

Intermediate:  Responses includes “function”, “change in
function: ” but does not mention a se-
cant line.

Surface:  Does mention change in function, not able to
indicate points (x, y) and on the graph
and show that it represents a secant line.

TASK C: Let

(i) Find the instantaneous rate of change of f(x) at x = 0.5
using the definition of the derivative. (ii) Find the equation
of the corresponding tangent line. (iii) Plot the graphs of
f(x) and the tangent line on the same system of axes.  Zoom
in on the graph around the point (0.5, f (0.5)) until the two
graphs are indistinguishable.  How close did you have to
get? (iv) Evaluate . Explain how you can
estimate the derivative of f(x) at 0.5.

Deep: Able to show “sequence of secants converge to a
point to a tangent”, and “slopes of secants converging
to a slope of the tangent”, and “ ”,

 is the slope of the tangent and instantaneous
rate of change, and is the average rate of  change
which is the slope of the secants.

Intermediate: Able to show “sequence of secants converge
to a point to a tangent”, and “slopes of secants con-
verging to a slope of the tangent” but not responses
“ ”, is the slope of the tan-
gent and instantaneous rate of change, and is the
average rate of change which is the slope of the se-
cants.

Surface: No distinction made between slopes of secants
and tangents.

The experimental and control groups were compared on
the basis of the errors they made on a set of tasks. Table 2
presents the typology of errors for the two groups. The
tasks and the performance are discussed below.

Task 1 was based on the limit of an infinite geometric se-
quence. From a fixed point P on a circle (shown in a dia-
gram) secants were drawn passing through various points
Q1, Q2, ... Students were asked (1.1) how many such se-
cants could be drawn and (1.2) what happens when Q gets
closer and closer to P. The idea of the rotating secant was
intended to relate to the approach to differentiation.  This
item would give evidence concerning the level of under-
standing of the tangent as a limit. 76% of the experimental
group failed to make relationships. Table 1 shows that these
errors were primarily structural errors.  6% of the students
from the blended group made arbitrary errors; they failed
to take the constraints into account.  A larger percentage of
the control group (94%) displayed structural errors. The
frame ‘sequences’, ‘tangent line’ and ‘limit’ could not be
retrieved. Vague answers like “as many as you want”, “as
many as possible” and “many of them” were characteristic
of the incorrect responses.  The required frames were
sketchy and incomplete.  Clearly students needed help in
understanding the tangent as the limit of the set of secants.
This task was also a sub-problem of Task 6.  Comparing
the responses from both the groups in each of these tasks
revealed that there was a correlation between the poor per-
formance in both the experimental group and the control
group.  This confirmed that an incomplete frame in one
sub-frame would reflect incompleteness in another related
frame.

Task 2, based on the rate of change from the straight line
graph, was a problem about water flowing into an initially
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empty tank at constant rate, which was explicitly given as
2 units of depth per unit of time. The data was presented
both in a table and in a coordinate graph. Students were
asked what the rate of increase in the depth was when
(2.1) x = 2 ½ and (2.2) when x = T.

Task 3, also based on the rate of change from the straight
line graph, presented the coordinate graph of y = 3x - 1
along with the equation. Students were asked the follow-
ing: (3.1) What is the value of y when x = a?  [a is a real
number] (3.2) What is the value of y when x = a + h?  [h is
any increment] (3.3) What is the increase in y as x increases
from a  to a + h? (3.4) What is the rate of increase of y as
x increases from a  to   a + h?  (3.5) What is the rate of
increase of y at x = 2 ½? and at x = X?

Task 2 and 3.5 were grouped for analysis. In Task 2, at
x = 2½, a large number of the subjects gave the value of y,
which is 5, instead of the rate. It was apparent that both
experimental and control groups did not grasp the meaning
of the explicit mention of the rate as 2 units per unit of time.
At the general point x = T in task 3.5, the responses were
worse.  There was a significant misunderstanding between
the rate of change at a point and the y-value at that point. It
is also possible that the students had no conception of rate
of change at all.  This is why they worked out the y-value,
given the x-value.  A fairly large number of structural errors
were recorded.  This represented 79% of the sample in
each category.  Clearly students were unable to retrieve the

frame ‘a tank being filled with water’, ‘ a straight line graph
with gradient 2’ and ‘rate of change equal to gradient’.  In
particular the frame ‘straight line graph’ was incomplete.
Within this frame the algebraic sub-frame was also not de-
veloped. This task represented a real world problem.  An-
other explanation that could be afforded is that the students
were not subject to real world problems during their lecture
and tutorial sessions.  These responses represent the expe-
rience of the students, a type of experience that is charac-
terized by doing problems by “drill” or using the mechanis-
tic approach.

Task 4, concerned with finding the average rate of change
from a curve, presented the coordinate graph of y = 3x2 +
1 along with the equation. Students were asked the follow-
ing: (4.1) What is the value of y when x = a?  [a is a real
number] (4.2) What is the value of y when x = a + h?  [h is
any increment] (4.3) What is the increase in y as x increases
from a  to a + h ? (4.4) What is the average rate of change
in the x-interval a to a + h? (4.5) Can you use the result in
4.4 to obtain the rate of change of y at x = 2½?  At x = T?  If
so, how?

24% of the experimental group and 71% of the control
group made structural errors in this task.  A greater per-
centage of students from the experimental group were able
to retrieve the frame required for the solution of this task
‘the average rate of change can be calculated from any two
points irrespective of the curve’.  This shows that their

Table: 2. Classification of errors
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interaction with the computer had reinforced this frame.
The students from the control group were baffled. An in-
teresting observation was that this is a typical real world
problem encountered in engineering.

Task 5 dealt with differentiation and contained the follow-
ing questions: (5.1) What is the formula for the rate of
change for the equation y = xn? [n is an element of the
natural numbers] (5.2) What is the rate of change formula
for each of the following equations? (a) y  =  3x3   (b) y  =  4
(c) y = 2/x2?

12% of the experimental group recorded structural errors
and 32% of the control group recorded structural errors.
26% of the experimental group made executive errors and
32% of the control group made executive errors.  Students
have lost track of the algorithm that they were trying to
use.  Davis (1984) refers to this as a control error.  The
student has memorized a rule he/she has been following or
they behave in a certain way because they know from ex-
perience that this is an effective or appropriate way to tackle
the problem. The majority of the students were able to
employ the mechanistic methods that were needed to solve
the task.  It is clear from the data that students have mas-
tered the “rules” required to undertake this task.  This con-
firms that frame ‘rules for differentiation’ were easily ac-
cessible to these students.

Task 6 was based on differentiation as a limit.  It presented
a diagram used in engineering mathematics to introduce the
definition of the derivative, viz. ,
where y is any function and h is an increment in x. The
students were asked: (6.1) At which point or points of the
graph does the formula measure the rate of change? (6.2)
Explain why the formula defines this rate of change?

The combined data for this task and task 1.2 shows that
56% of the experimental group made structural errors.  A
high percentage made arbitrary errors (38%).  It is evident
that these students did not understand the definition for the
derivative. 74% of the control group made structural errors
and 21% made arbitrary errors.  The percentage of arbi-
trary errors is less than that of the experimental group.  This
can be attributed to the fact that a single answer response
was needed for this task and it became a problem to clas-
sify a wrong answer, like Q, for instance. The majority of
the students were unable to retrieve the frame ‘instanta-
neous rate of change’.  The ‘congruent motive-strategy
package’ described by Biggs (1986) is prevalent here.  A
larger percentage of the experimental group gave a correct
response.  They were able to show sound reasoning based
on understanding.

Task 7 asked students to explain the meaning of the fol-
lowing symbols: (7.1) x; (7.2) y; (7.3) dy/dx; (7.4) dx;
(7.5) dy; (7.6) dy/dx; (7.7) What is the relationship be-
tween y/ x and dy/dx?

The symbols that were given represented standard notation
used in elementary calculus and those that must be under-
stood by students. 42% of the experimental group made
structural errors and 48% of the control group exhibited
structural errors.  It showed that a large percentage of the
students were unable to connect the various symbols mean-
ingfully.  Clearly these symbols were confusing to both
groups.  These may not have been explained adequately in
the lectures or the frame ‘symbolic images’ is lacking in
both groups.  A number of students were able to say that

x and y represented small increments in the x-direction
and y-direction respectively.  It would appear that students
have met these symbols before. However students were
not able to explain the quotient y/ x correctly. The sym-
bols dx and dy were misinterpreted.  Students could not
make sense of these symbols if they were not written as a
quotient dy/dx.

Conclusion

Student errors in elementary differential calculus can be
minimized by using a blended teaching approach. Many fac-
tors need to be considered when referring to students un-
derstanding of differentiation.  These include: (i)  weak pre-
knowledge frames (ii) reliance on algorithmic means to solve
problems (iii) errors made by students and (iv) symbolism
in elementary calculus. In the learning of elementary calcu-
lus it is essential that a mechanistic application of a set of
rules is not sufficient, rather the synthesis of the appropri-
ate mental frames is needed to represent concepts and the
procedures necessary to seek solutions.
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